Readme: Setting up Flexible_GA
Neville & Soricone
Most recent revision:

Sept. 2, 2004

Readme – Setting up the FLEXIBLE_GA Genetic Algorithm Code

Melvin Neville & Robert Soricone

Northern Arizona University

Flagstaff, Arizona

Outline:

A. Introduction

B. The Three Illustrative Problems

C. Overview of the Architecture

1. The UML package dependencies

2. The Chromosomes package

3. The BasicDataStructures package

4. The CommonUtilities package

5. The MendelianChanges package

6. The GA_Mechanisms package

D. Adjusting the GA to Your Problem

1. File formats

2. The Chromosomes package

3. The BasicDataStructures package

4. The CommonUtilities package

5. The MendelianChanges package

a. Mutates

b. Crossovers and MasterCrossovers

c. Evaluations

6. The GA_Mechanisms package

a. GeneticAlgs

b. RunGenAlg

c. GeneticDrifts

d. RunGenDrift

E. Conclusions

F. References

A. Introduction

This readme-document refers to code files and session-record files (“script files”) that have been placed on the web

(see also the official web site http://astrogeology.usgs.gov/Projects/flexible_ga/)

as an accompaniment to Soricone & Neville (2004). The code files are freely available for copying and modification for those who would like to apply our Genetic Algorithm (GA) to their own problems – all we ask is that you maintain a reference to us in each of your code files that you derived from ours.

GAs offer the promise of “automatically” improving a program so that the programmer need not know before hand the best values of all parameters to the program. Their method is to draw upon principles found in Mendelian genetics and Darwinian evolution: the parameters being acted upon are the analogues of the genes on the chromosome that represents an individual, the parameter values are the allelic variations possible for the genes, selection occurs every generation in that the “better” individuals (chromosomes) are selected from among a population of possible chromosomes to progress to the next generation, and the selection is continued cycle after cycle (generation after generation). The individuals present in the population pool are generated from the individuals currently favored by selection through the processes of mutation (changes in the individual gene values: this provides the basic stuff of the evolution of the solution) and crossover (interchanging sequences of allelic values between a pair of chromosomes: this can position partial advantageous solutions together and get away from local solutions). GAs are also sometimes called “evolutionary algorithms”: the two approaches technically differ (Michalewicz 1996), but we will simply refer here to both as GAs.

For a GA to be able to work on a problem, a number of issues must be resolved:

(1) The nature of the genes has to be determined. For example, will they consist of floating-point values, integers, bit strings, or something more complex?

(2) The nature of a mutation must be determined. By how much and when can gene values be altered? Will certain mutations or combinations of mutation result in an illegal organism?

(3) The nature of crossover must be determined. Are there constraints on how the recombination of elements between two individual can occur?

(4) The evaluation of the “goodness” of the genetic makeup of an individual. This is what is selected for, but it should be efficient, as it occurs many times.

The word “automatically” in the first sentence of this Introduction section is therefore certainly qualified – this has been a motif of much of our work (Neville, Soricone & Waslo, 2004)!

Chance plays a part in the mutation and crossover processes: therefore two

different runs of a GA will probably have different results. (Note that this implies that a GA does not necessarily result in the optimal solution – indeed, that is usually the case in complex problems.) There is also a meta-level of parameters to the problem that goes beyond the parameters that are to be altered during the progress of the GA. This meta-level consists of the parameters for the machinery of the GA. For example, how often do mutation and crossover occur, how does the GA terminate (after a certain number of generations or when the evaluation of the best individual reaches a certain level), what level of value-changes are allowed for mutations, etc.

The very order in which the stages of a cycle progress and the exact nature of those stages also differ from one approach to another. Our particular GA is hardwired to do the following:

(1) The next generation will be generated from a set number of the “best” individuals of a generation, each individual producing a standard number of clones for that generation. We call these two GA parameters winners-per-generation and children-per-winner respectively: they are specifiable on the command-line of the invoking programs (rungenalg and rungendrift). This produces a pool of selection candidates which equals winners-per-generation times children-per-winner.

(2) All individuals of this pool of candidates with an exception category soon to specified are then subjected to first the possibility of zero to multiple mutations and then, in random pairings, to a possible single crossover. The exception is that one child produced from each winner is inviolate with respect to both mutation and crossover. This produces two effects: on the down side, the ability to escape local minima (assuming a good evaluation is a low value) is diminished but on the upside the solution ratchets towards improvement – one will never have a generation in which the best evaluation is worse that the best of the preceding generation.

(3) Exactly the best-evaluating winners-per-generation number from the entire pool is selected for the next generation (repeat of step 1 to indicate the start of the next cycle).

B. The Three Illustrative Problems

Thus there are a large number of decisions that might have to be taken to perfectly map a GA algorithm to a problem. We have provided three illustrative examples to both show you what can and/or needs to be done and to provide you with the structure of three different solutions that cover much of what one might want to tackle: there is a fair chance that your problem can be mapped into one of these, either closely enough so that no recoding is needed or so that the recoding is reasonably straightforward. However, what seems to be necessary does appear complex, and a model of how to perform alterations is hopefully useful.

These three problems are:

(1) The Traveling Salesman Problem. This is a classic problem in computer science which, however, also has very practical applications. The fundamental problem starts with a graph of fully interconnected nodes or towns, where the distances between the towns are measured (a “weighted graph”).. The problem lies in finding the best route in which each town is visited once and only once in a tour which begins and ends with the same node. “Best” here is in the sense of lowest total distance measured along the final route.

The allelic value of a gene is represented by an Integer which is the identifier of a node (or town) on the proposed best route, and the chromosome portrays the route by giving the sequence of the visitation of the nodes. Our version of mutation involves the random selection of two nodes which are then either swapped or have the sequence of nodes that they bracket inverted. Our version of crossover is the “OX” algorithm described in Michalewicz 1996: this is necessarily complex in that valid tours have to include each node but only once.

(2) The GenBitEvolve Problem. This problem (also from Michalewicz 1996) is the maximization of a function of one variable subject to certain constraints. The value of the variable to be used to compute the function is determined by a bit-string representation. A single allele is a bit value (Boolean) and the chromosome is a bit string that represented the value. Mutation is the flipping of the gene’s value from one binary value to the other, and crossover is a straightforward swap of two equal-length substrings between two chromosomes.

(3) The SinSeries Problem. This is an original problem in which the coefficients of the power series that represents the sine function are evolved. The function format is therefore:

f(x) = a0 x0 + a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x + a6 x6 + …

The actual answer is known to be:

sin(x) = 0 x0 + x1 /1! + 0 x2 - x3 /3! + 0 x4 + x5 /5! + 0 x6 +…

A particular gene represents the coefficient of a particular power in the series and is therefore a floating-point (Long_Float) value. Mutations are limited to +/- (randomly determined) alterations in the values of the genes, with the amount allowable differing among the coefficients (these mutation amounts are read in from a “delta-file” specified by a “run-file” which in turn is specified on the command-line). Crossover involves the straightforward swapping of sequences between two chromosomes. Evolution is allowed to work on all possible coefficients (up to a certain power), even though the actual sine power series has 0-value coefficients for all even powers.

Our GA was effective for each of these problems. For example, 20 rungenalg runs on the Traveling Salesman problem for a 225-node graph resulted in all runs producing tours within 10% of optimum, the GenBitEvolve problem was immediately and accurately solved, and the SinSeries problem led to functions that could perform within 0.25% of the actual sine values in the range 0 – 90 degrees (Soricone & Neville 2004, Neville, Soricone & Waslo 2004, Neville & Sibley 2002).

C. Overview of the Architecture

We will present the overall architecture through the presentation of the high-level UML package associations diagram followed by presentations with brief discussions of the individual UML-style packages to show the major subsystems through the groupings of Ada-style packages.

1. The UML package dependencies

The Chromosomes package specifies how an individual consists of coefficient values (parameter values, with analogy to allelic values of genes). The BasicDataStructures package allows the Chromosome individuals to be put into lists or a priority queue. The CommonUtilities package provides file-handling and random-number generation for the other packages. The MendelianChanges package provides the mechanisms for mutation, crossover, and evaluation; this package is highly problem-dependent. The GA_Mechanisms package sets up the high-level GA algorithms and gives the driver procedures.

The UML packages are now discussed in more detail. They represent logical groupings of Ada packages; however, the UML package names, placed in the tabs, are simply descriptive and are not mentioned in the individual code files. The names of the relevant Ada packages, which are syntactic entities in the code files, are placed within each package icon body. Note that UML packages and Ada packages are not identical concepts. In the last UML package, GA_Mechanisms, we include the two special procedures which make up the alternate executable drivers and we explain the relationship between the two algorithms.

2. The Chromosomes package

Package Chromosomes contains Ada

packages that describe the basic makeup of

an individual: the sequence of “genes”

(parameters) along the “chromosome” (the

individual). Coef_Containers is highly

dependent upon the type that is used for the

parameters and will alter significantly from

problem to problem, while CoefObjs is

common to all problems but generic and

highly parameterized.

CoefObjs exports tagged type CoefObj: the parameters are cells of an array. The Ada package is generic to the type used for the parameters and I/O operations for that type.

Coef_Containers differs depending upon how CoefObjs is to be instantiated; it takes care of the instantiation and exports a revised, specialized CoefObj type. A different Ada Coef_Containers package may exist for each problem. Our code actually makes use of a convention that is used in the rest of the program code: the version dealing with the Traveling Salesman problem has the suffix “_ts”, the version dealing with the GenBitEvolve problem has the suffix “_gb”, and the version dealing with the SinSeries problem has the suffix “_ss”. We actually used more descriptive names for the problem-specific container packages which emphasized the type of the problem’s parameters: CoefInt_Container for the Traveling Salesman container (Integer-valued parameters = node identifiers), CoefBoolean_Container for the GenBitEvolve container (bit values), and CoefLFloat_Container for the SinSeries container (Long_Float values).

3. The BasicDataStructures package
Package BasicDataStructures contains packages which are common to all problems

they need be altered when moving to

another problem as they achieve their

flexibility through generics.

GenListNodes exports tagged type GenListNode which points to the next node as well as to a GenItem (one of the generic parameters).

EvalNodes exports Evalnode, which points to a GenItem (generic parameter) as well as containing an evaluation score.

GenLinkedLists exports GenLinkedLists, which contains a pointer to a list of ListNodes.

GenBinaryHeaps exports GenBinaryHeap, which sets up a structure of EvalNodes.

Hence a list is a linked-list of ListNodes, each of which points to an EvalNode, each of which contains an evaluation value as well as a pointer to the actual item stored in the list. Similarly a heap (used for priority queues) stores EvalNodes.

4. The CommonUtilities package

Package CommonUtilities contains Ada

packages that provide services which are they also need

common to all the problems: they also do

not need to be altered in a new problem.

RandomGens exports tagged type RandomGen, which is a random-number generator.

Text_Files exports Name_Type to handle file names and provides file opening-and-closing services.

5. The MendelianChanges package

Package MendelianChanges handles the

phenomena of mutation and crossover. Ada

packages Mutates, Crossovers, and

Evaluations are heavily dependent upon the

problem and may need to be rewritten for a

new situation, while MasterCrossovers deals

with the logic needed to associate random pairs of chromosomes: here only trivial (i.e., package name) rewrites are called for when moving to a new problem.

Mutates produces effectively a singleton Mutate object which works the same for all chromosomes in the problem. It makes use of Ada package RandomGens to ascertain how and where changes can occur in the parameters (genes).

Crossovers produces effectively a singleton Crossover object, which works the same for all chromosome pairs in the problem. It makes use of Ada package RandomGens to ascertain how a crossover can work for a pair.

MasterCrossovers sees to the association of pairs of chromosomes for a crossover: it makes use of Ada package RandomGens to select which chromosomes are involved.

Evaluations exports only the subroutines involved in making the problem-specific

evaluation. These subroutines are the mechanisms for selection of the winning individuals for reproducing for the next generation.

6. The GA_Mechanisms package

Package GA_Mechanisms contains the high-

level machinery of the genetic algorithm.

GeneticAlgs and GeneticDrifts are Ada

packages for two different algorithms;

however, GeneticDrifts incorporates the

GeneticAlgs machinery multiple times

Both these packages are highly generic.

RunGenAlg and RunGenDrift are the two

different executable programs which can be

run. Only trivial changes in any of these

entities are necessary when switching problems.

GeneticAlgs sets up the fundamental algorithm of: generate children-per-winner clone chromosomes for each winner; operate on all but one from each winner with first mutation and then crossover; evaluate and sort the children; select winners-per-generation for the next cycle.

RunGenAlg instantiates the complex set of package dependencies and sets up the interpretation of the command-line.

GeneticDrifts sets up the fundamental genetic-drift algorithm of: run a specified number of generations (cycles) of the basic GeneticAlg as a single-stream; take all children produced in the last cycle and use these to start independent lines for multiple-steams of the standard GeneticAlg ; take the best individual out of all these lines and use it to start a new round of a single-stream GeneticAlg; proceed by alternating single-stream and multiple-stream modes, finishing with a last single-stream. The analogy is to evolution’s genetic drift, where by chance of inclusion in a small founding population the various allele frequencies can rapidly alter. The desire is to reduce entrapment in local minima.

RunGenDrift instantiates the complex set of package dependencies and sets up the interpretation of the command-line.

D. Adjusting the GA to Your Problem

The purpose of this document and the related code and text files is to facilitate the adaptation of the GA algorithm to your particular problem. The three problem models (TravSales, GenBitEvolve, and SinSeries) give examples of how to set up the code, and we will compare the similarities and differences among these problem solutions. We will proceed through the five UML packages, but we will begin by discussing the significance of the file-name formats in the directory or directories to which we are providing you access.

1. File Formats

The code files follow the convention of the GNAT compiler: specification files end in the extension “.ads” and implementation files in “.adb”, as do the files containing the driver procedure for making an executable program. A driver file name lacking any extension is the executable file.

File names that start with the prefix “test-” are the drivers written to test out an intermediate stage of the code, with the rest of the name providing the clue as to what is being tested.

File names that start with the prefix “script-“ are files that document a test. They often contain information about the compilation, the results of one or more runs, files of input and/or output data, and the driver code file and perhaps other code files. Some code files have been slightly emended since the script file was made, so if you use the test driver you may obtain somewhat different output from the script documentation.

As noted during our discussion of the Chromosomes UML package, we have used the suffixes (but before the “.ads”/”.adb” extensions) of “_ts”, “_gb”, and “_ss” to indicate code files dealing specifically with the TravSales, the GenBitEvolve, and the SinSeries problems. Some files that are completely identical in all the problems (and therefore probably could be used as is in your problem) have no such suffix. The Coef_Containers file names are even more specific: coefints_container, coefbooleans_container, and coeflfloats_container plus “.ads”/”.adb” extension for the TravSales (Integer), GenBitEvolve (Boolean), and SinSeries (Long_Float) problems.

2. The Chromosomes package

The tagged type CoefObjs.Coefobj is the type of the “chromosome” that represents the individual in the GA. It is generic with respect to:

CellType:

The type of the “genes” of the chromosomes: the gene

Is that which mutates (changes value) during the GA.

HighIndex:

The genes (also often referred to in this document as

“coefficients”) in the chromosome are stored in an array

with range 0 .. HighIndex. This instantiation effectively

gives a default HighIndex value, which, however, is

overruled in the full problem examples by values read in

from files; in these cases, any values could be used in the

instantiations.

Blankvalue:

A gene value that stands for what you want to deem a null

or blank case (sometimes this needs to be altered, e.g., with

the TravSales problem we wanted the gene values of a

given chromosome to represent a valid tour so all nodes

had to be present once and only once).

CoefIn (CellType):
A readin procedure for CellType values.

CoefIn (File_Type, CellType):

A reading procedure for CellType from a file source.

CoefOut (CellType, Natural):

A writeout procedure for a CellType value to be written in

a field of specified width.

CoefOut (File_Type, CellType, Natural):

A writeout procedure for a CellType value to be written

Into a specified file in a field of specified width.

You need to decide upon the type of value you wish for your genes. This is likely to be either Integer, Long_Float, or Boolean, and our examples cover these. You also need to think about how many genes you need in your chromosome. You then provide the subroutines and the instantiation in a package (our “container” package). The file script-test_coefobjs shows how this can be done for the three standard types just indicated and how the instantiated types (here called CoefInt, CoefLFloat, and CoefBoolean are obtained and used by the program test_coefobjs.adb.

Your job is therefore essentially limited to writing the package that converts the generic CoefObj into the form that matches your need with respect to genes and chromosome. The I/O operations should usually be a simple adaptive interface to standard library I/O operations.

Because of the differing nature of I/O with the different basic data types, we decided not to force a generic structure on the second-level package Coef…_Container but rather to have one for each fundamental type used in CoefObjs. Each version instantiates a version of CoefObjs appropriate to its problem and then can be used in non-generic fashion by the particular GA program which is being developed for your problem.

At the very end of the specification file for each container package we have given aliases for the instantiated types and renamed the subprograms that are instantiated so that code that depends upon these can be uniform in form and nomenclature from one problem to another.

3. The BasicDataStructures package

The code of these data structures (which set up lists and a binary heap) is not dependent upon the particular problem except that instantiations of the generic Ada packages will handle the contents of the data structures. The files of this UML package therefore do not need to be rewritten.

4. The CommonUtilities package

This UML package is a grab-bag of two functionalities: Ada package Text_Files to facilitate I/O operations with text files and Ada package RandomGens to produce a random-number generator to be used during mutation and crossover. The files of this package also do not need to be rewritten.

5. The MendelianChanges package

This conceptual UML package contains the mechanisms that produce change in a chromosome and which can evaluate the chromosome. These are contained in Ada packages which are highly dependent upon the author’s interpretation of a problem: hence the files can expect to be modified depending upon the author’s interpretation of mutation, crossover, and evaluation.

a. Mutates

The logical idea behind the mutations facility for a given genetic algorithm is to provide structured variability in each generation. This usually occurs by potentially (according to a probability) altering the value of a given gene on the chromosome. However, in the case of the Trav_Sales version, the alteration of one value (the identification of a node in a route) necessarily implies that some other node is also altered so that all nodes appear once and only once in the route. In this case, we simply swapped the identifications of the two nodes. We also made the inversion of the order of nodes in a segment of a route a mutation possibility.

The chance of mutation occurring is primarily specified to the program by the chance of mutation occurring in an individual organism (i.e., a chromosome); it is then translated into the chance of mutation at each of the gene locations. It is therefore possible to have multiple mutations occurring within a chromosome in a single generation.

Similarly to the idea of a Java interface, the Ada Mutates package MUST export at least the following two subprograms:

procedure DoMutate (The_Mutate : in Mutate;

 The CoefObj : in CoefObj);

-- decides whether a mutation will occur and carries it out;

function MakeMutate (FileName : in String;

 HighCoef : in Natural;

 POM : in Float) return MutatePtr;

-- returns a Mutate object, which has the information on how to carry out

-- mutations;

-- HighCoef specifies the range of gene locations: 0 .. Highcoef;

-- POM = “probability of mutation” per each organism;

We provide versions of this package for each of the three problems:

 Mutations package
Problem area

 Coef…_Containers

Mutations_TS

(the Trav_Sales version)
 CoefInts_Container

DoMutate() can either swap the identifies of two nodes in the tour route or

invert the order between and inclusive of two nodes (an equal chance either way if a mutation does occur).

MakeMutate() does not make use of FileName.

Mutations_GB

(the GenBitEvolve version)
 CoefBooleans_Container

DoMutate() flips the bit value at a gene location if a mutation is to occur at

that location.

MakeMutate() does not make use of FileName.

Mutations_SS

(the SinSeries version)
 CoefLFloats_Container

DoMutate() alters the value of a coefficient in the power series for the sine

function to increment or decrement (randomly) according to its position in the series; the allowed change-values (“deltas”) are kept in an array.

MakeMutate() reads in the values for the delta-array from a file which is

named in the FileName parameter.

This Ada package is not generic with respect to the CoefObj type but rather makes use of the appropriate Coef…_Container package.

b. Crossovers and MasterCrossovers

The logical idea behind the Crossover facility for a given genetic algorithm is to provide the chance that a co-evolved sequence of gene values can be swapped to appear by another co-evolved sequence. This occurs through the swapping of a sequence between two chromosomes. In many cases, this is a straight-forward swap of the values of corresponding gene sequences. However in the case of the Trav_Sales version, the need to have the route specified by a chromosome pass through each node in the graph once and only once means that swapping is more complicated.

The chance of crossover occurring is primarily specified to the program by the chance of crossover occurring to an organism (= chromosome); this necessarily involves another organism and also a choice of where in a chromosome the crossover is to occur. Our algorithm is limited to having a single crossover occur once at most for any organism in any generation.

The Ada Crossovers package MUST export at least the following two subprograms:

procedure DoCrossOver (The_CrossOver : in CrossOver;

 The_CoefObj1 : in CoefObj;

 The_CoefObj2 : in CoefObj);

-- decides whether a crossover will occur between the two CoefObjs

-- and then carries it out;

function MakeCrossOver (NumCoefs : in Natural;

 POCO : in Float) return CrossOverPtr;

-- returns a pointer to a CrossOver object, which has the information on how

-- to carry out crossovers;

-- NumCoefs specifies the range of gene locations: 0 .. NumCoef-1;

-- POCO = “probability of crossover” for an individual organism;

The three problem versions of this Ada package are:

 Crossovers package
Problem area

 Coef…_Containers

Crossovers_TS
(the Trav_Sales version)
 CoefInts_Container

DoCrossover() carries out the swap of values between two chromosomes

by using a sequence from one chromosome with the same values (node identifications) from the other chromosome, but altering the order of where the swapping is occurring in the second chromosome;

Crossovers_GB
(the GenBitEvolve version)_
 CoefBooleans_Container

DoCrossOver() simply swaps a sequence of gene values between two

chromosomes;

Crossovers_GSS
(the SinSeries version)_
 CoefLFloats_Container

DoCrossOver() simply swaps a sequence of gene values between two

chromosomes;

This Ada package is not generic with respect to the CoefObj type but rather makes use of the appropriate Coef…_Container package.

The MasterCrossovers package simply implements how to carry out the crossover mechanism (however it was determined for this problem) on organisms stored in the standard way in the standard lists of the GA. It should, therefore not change in essence from one problem to another: however, the file names will need to match throughout the algorithm. We have provided again three versions of the package for implementing the three problem examples.

The Ada MasterCrossovers package MUST export at least the following two subprograms (again note that name changes may be necessary to achieve matching):

procedure PerformMasterCrossover

(The_MasterCrossover : in out MasterCrossover);

-- ascertains which pairs of chromosomes will undergo crossover and carries it

-- out;

-- updates crossover statistics;

function MakeMasterCrossover

(The_CrossOverP : in Crossovers.CrossoverPtr;

 The_ChildList : in GenLinkedList.GenListPtr;

 NWinPerGen : in Natrual;

 NChildPerWin : in Natural) return MasterCrossOverPtr;

-- returns a pointer to a newly-created MasterCrossover object,

-- which makes use of The_CrossOverP pointer to a Crossover object;

-- The_ChildList is a pointer to a linked-list containing EvalNodes pointing to

-- the concrete objects which are subject to crossover;

-- NWinPerGen is the number of winners per generation;

-- NChildPerWin is the number of children per winner per generation;

All three of the MasterCrossovers packages examples for were directly derived (via simple package name changes) from the same package we had previously used. We provide only one script file testing the workings of the algorithm (for the SinSeries problem), wince the mechanism is common to any problem.

c. Evaluations

In this case you are writing your own version of a package to evaluate the CoefObj objects in your particular GA. The Ada package MUST export at least the following two subprograms:

function Evaluate (The_CoefObjP : in CoefObjPtr) return Long_Float;

 -- is passed a pointer to a CoefObj and returns the object’s evaluation ;

procedure InitEvaluation (FileName : in String);

-- to initialize the singleton package data structures;

-- the parameter may be a null string, in which case nothing more need be

-- known or done; it could also be the name of an important file (e.g., the

-- CoordsFile in the Trav_Sales problem which provides the coordinates for

-- the nodes in the problem);

It may also export types and other subprograms, depending upon the particular needs and wants for your problem, but it need not do so.

Your Evaluations package is not generic with respect to the CoefObj type; rather, it uses a Coef…_Container package that takes care of the instantiation of CoefObj.

We provide again three versions of this package in order to show the principal variants of our problem examples:

 Evaluations package
Problem area

 Coef…_Containers

Evaluations_TS
(the Trav_Sales version)
 CoefInts_Container

Evaluate() simply sums the arc distances along the route specified by the

chromosome.

InitEvaluation() makes use of the file parameter to reading the matrix of

distances between nodes: it plays a very useful role.

Evaluations_GB
(the GenBitEvolve version)
 CoefBooleans_Container

Evaluate() plugs the value of the variable specified by the bitstring given

by the chromosome into the formula to be maximized.

InitEvaluation() does not make use of the file parameter: it does not play

a useful role. The testing program does use four hard-wired file

names.

Evaluations_SS
(the SinSeries version)
 CoefLFloats_Container

Evaluate() checks out the accuracy of the power series version of the sine

function in the range 0 .. 90 degrees by increments of 5 degrees.

InitEvaluation() does not make use of the file parameter: it does not play

a useful role.

The tool evalsinprofile (very similar to the testing program) allows one to read in a CoefObj from a file and print out a comparison of the values it calculates in the range 0 .. 90 degrees by increments of 5 degrees with the values obtained by the library sine function; we give a script file that shows its use. It is used on an object that was produced by a genetic-drift run: one sees that the values calculated are all < 0.25% off from the library function and often < 0.1 %.

6. The GA_Mechanisms package

a. GeneticAlgs

This Ada package organizes and activates the basic data structures so that the fundamental GA can be carried out. Most of the variability is already contained in the previous packages, so your version will mostly involve only name changes.

The Ada package MUST export the following four subprograms:

procedure RunAlgOneG (The_GeneticAlg : in out GeneticAlg);

-- runs the genetic GA for one generation;

procedure RunAlgManyG (The_GeneticAlg : in out GeneticAlg;

 Delta_Gen : in Natural);

 -- runs the GA for Delta_Gen generations;

procedure RunAlgToCriterion

(The_GeneticAlg : in out GeneticAlg;

 LimitGen : in Natural);

-- runs the GA until the criterion of Evaluate() is reached or until an

-- amassed total of LimitGen generations has been reached, whichever

-- comes first;

function MakegeneticAlg

(ChildrenPerWinner : in Positive;

 WinnersPerGen : in Positive;

 ProbOrgMut : in Float;

 ProbOrgCrossOver : in Float;

 HighCoef : in Natural;

 MaxGenerations : in Natural;

 InitOrg : in CoefObjs.CoefObjPtr;

 ThresholdEvaluate : in Float;

 FileName : in String := “”) return GeneticAlgPtr;

 -- returns a pointer to a newly allocated and initialized GeneticAlg;

-- ChildrenPerWinner = number of offspring that each winner produces;

-- WinnersPerGen = number of winners that each generation selects;

-- ProbOrgMut = probability of mutation occurring in an organism (this will be

-- appropriately converted into the probability of mutation at each gene);

-- ProbOrgCrossOver = probability of an organism being involved in crossover

-- with another organism;

-- HighCoef = the high index of gene locations where the range is 0 .. HighCoef;

-- MaxGenerations = maximum generation to which to run the algorithm;

-- InitOrg = pointer to what the initial organism looks like;

-- ThresholdEvaluate = the value of the criterion limiting the number of cycles

-- (generations) run;

b. RunGenAlg

This is the driver that runs the GeneticAlgs algorithm and it is contained within a “.adb” file. The command-line parameters are given in the file’s documentation but are repeated below. The file’s code should be consulted for the order and constitution of the instantiations that are needed. Our basic GA process is described at a high level in the Introduction.

The command-line parameters in order are:

(1) NWin = the number of winning organisms per generation (“winning” means that an organism will reproduce in the next generation).

(2) NChildWin = number of children each winner produces.

(3) Max_Gen = the maximum number of cycles (generations) to run the GA, assuming that the criterion for ending, given in the RunFile, is not met.

(4) Display_Freq = the frequency of outputting a display of the current state of the GA, given in terms of a display every so-many cycles;

0 => only at the end and only the best value and related

coefficients;

N => Winners list of values plus Winners list of coefficients every

N cycles;

(5) RunFileName = name of the RunFile to provide the rest of the run’s parameters; The description of the contents of a RunFile in given for each problems RunGenAlg documentation. The runfiles are formally identical but a given problem may handle their values differently from other problems.

c. GeneticDrifts

This Ada package organizes and activates the machinery to carry out the genetic-drift algorithm (which is described in the discussion of the GA_Mechanisms package in section C.6.). Remember that this algorithm manages multiple versions of the single-stream basic GA algorithm. The package MUST export the following subprograms:

procedure RunGeneticDrift (The_GeneticDrift : in out GeneticDrift);

 -- implements the execution of the algorithm;

-- runs the algorithm until the ThresholdEvaluate value is achieved or

-- until the MasxSingleBouts of Single-_Stream mode have been

-- completed (automatically completing MaxSingleBouts – 1 of

-- Multiple_Stream mode execution);

function MakeGeneticDrift

(NumSingleBouts : in Natural;

 Bout_Length : in Natural;

 Display_Freq : in Integer;

 NumChildPerWin : in Positive;

 NumWinPerGen : in Positive;

 ProbOrganismMut : in Float;

 ProbOrganismCrossover : in Float;

 The_HighCoef : in Natural;

 The_InitialOrganism : in Coef…_Container.CoefObjPtr;

 The_ThresholdEvaluation : in Float;

 FileName : in String) return GeneticDriftPtr;

-- returns a pointer to a GeneticDrift object which has been assembled

-- with the aid of the parameters passed in;

-- a GeneticDrift makes use of multiple GeneticAlg objects which will

-- themselves be manufactured from many of the above parameters (see

-- MakeGeneticAlg() for an explanation of most;

-- NumSingleBouts: a GeneticDrift consists of NumSingleBouts single-

-- stream GeneticAlg bouts interspersed with and around

-- NumSingleBouts – 1 multiple-stream sessions of multiple

-- GeneticAlg objects running in parallel;

-- BoutLength: all bouts have this many cycles;

d. RunGenDrift

This is the driver that runs the GeneticDrifts GA and it is contained within a “.adb” file. The command-line parameters are given in the file’s documentation but are repeated below. The file’s documentation should be consulted for the order and constitution of the instantiations that are needed. Our basic genetic-drift GA process is described at a high level in section C.6; it is assembled out of many standard GA bouts.

The command-line parameters in order are:

(1) NWin = the number of winning organisms per generation (“winning” means that an organism will reproduce in the next generation).

(2) NChildWin = number of children each winner produces.

(3) NumSingleBouts = number of single-stream normal GA bouts; these alternate with Nwin * NchildWin multiple-stream GA bouts, with a single-stream bout beginning and one ending the overall run. This parameter is additional to the command-line parameters of RunGenAlg.

(4) Max_Gen = the maximum number of cycles (generations) to run in a bout of the GA, assuming that the criterion for ending, given in the RunFile, is not met; both single-stream and multiple-steam bouts will have this number of cycles.

(5) Display_Freq = the frequency of outputting a display of the current state of the GA, given in terms of a display every so-many cycles;

0 => only at the end and only the best value and related

coefficients;

N => Winners list of values plus Winners list of coefficients every

N cycles;

(6) RunFileName = name of the RunFile to provide the rest of the run’s parameters; The description of the contents of a RunFile in given for each problems RunGenDrift documentation. The RunFiles are formally identical but a given problem may handle their values differently from other problems.

E. Conclusions

Our version of the GA has already made some decisions about the implementation and has limited other possibilities. It has, however, proved itself highly successful, and we have illustrated its breadth in the three problem examples. If you have a problem which seems amenable to the GA approach, you should:

(1) Consider whether the problem can already be mapped directly into one of the problem examples – perhaps you can avoid all conversion work!;

(2) Decide on the gene type (“CellType”) that you will need for CoefObjs and for your particular selection of a Coef…_Container file and rewrite or reuse the appropriate version of the latter file;

(3) Decide what you want mutation to mean and adapt the Ada Mutates package;

(4) Decide what you want crossover to mean and adapt the Ada Crossovers package;

(5) Decide what you want evaluation to mean and adapt the Ada Evaluations package;

(6) Realize that you can effectively reuse the CoefObjs Ada package, the UML CommonUtilities package, the UML BasicDataStructures package, and the Ada MasterCrossovers package, in some cases with effectively no changes at all;

(7) Make the minor adaptations that will be necessary for the UML GA_Mechanisms package.

(8) At all stages we recommend writing testers, often directly reusable from the appropriate “test-… .adb” files.

We hope that comparing the code of the three problem examples will help!

F. References

Neville, M. & A. Sibley, 2002, “Developing a generic genetic algorithm”, SIGAda 2002 Conference, Houston, Texas.

Neville, M., R. Soricone & J. Waslo, 2004, “On the automaticity of genetic programming”, CONIELECOMP 2004 Conference, Veracruz, Mexico, Feb. 16-18.

Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed, Springer.

Soricone, R. & M. Neville, 2004, “Comparative analysis of genetic algorithm implementations”, SIGAda 2004 Conference, Atlanta, Georgia, Nov. 14-18.

GenListNodes

EvalNodes

GenLinkedLists

GenBinaryHeaps

BasicDataStructures

CommonUtilities

RandomGens

Text_Files

MendelianChanges

Mutates

Crossovers

MasterCrossovers

Evaluations

GA_Mechanisms

GeneticAlgs

RunGenAlg (driver)

GeneticDrifts

RunGenDrift (driver)

GA_Mechanisms

BasicDataStructures

MendelianChanges

Chromosomes

CommonUtilities

Chromosomes

CoefObjs

Coef_Containers

Page 4 of 19

Printed: 9/10/2004

